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Porque se chamava moço
Também se chamava estrada

Viagem de ventania
Nem lembra se olhou pra trás

Ao primeiro passo
Porque se chamava homems

Também se chamavam sonhos
E sonhos não envelhecem

Em meio a tantos gases lacrimogênios
Ficam calmos

E lá se vai mais um dia
- Milton Nascimento e Lô Borges, Clube Da Esquina Nº 2
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Abstract

Predicate-argument structure analysis is a central component in meaning
representations of text. The fact that some arguments are not explicitly
mentioned in a sentence gives rise to ambiguity in language understanding,
and renders it difficult for machines to interpret text correctly. However, only
few resources represent implicit roles for NLU, and existing studies in NLP
only make coarse distinctions between categories of arguments omitted from
linguistic form.

This thesis proposes a typology for fine-grained implicit argument anno-
tation on top of Universal Conceptual Cognitive Annotation’s foundational
layer. The proposed implicit argument categorisation is driven by theories of
implicit role interpretation and consists of six types: Deictic, Generic, Genre-
based, Type-identifiable, Non-specific, and Iterated-set. The first contribution
of the thesis is to design such a typology, revisit part of the UCCA EWT
corpus, provide a new dataset annotated with the refinement layer, and make
a comparative analysis with other schemes both in terms of quantity and
quality.

The second part of the thesis presents the first transition-based Implicit
Parser that can handle implicit arguments dynamically in meaning represen-
tations. The parser differs from other implicit argument detection systems
that rather than attending to a specific linguistic phenomenon, it can perform
fine-grained classification of implicit arguments simultaneously when parsing
primary semantic representation graphs. We show that despite the difficulties
of predicting fine-grained implicit arguments, the parser manages to notice
some common situation in which certain kinds of implicit roles frequently
show up.
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It is hoped that this work can boost studies in obtaining implicit role
resolution and complement recent research on how to interpret semantics in
natural language understanding elaborately.
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Chapter 1

Introduction

Studies of form and meaning, the dual perspectives of language sign, can be
traced back to modern linguistics since de Saussure (1916, 1978), and the
topic drifts into NLP as a reflection that the current large neural language
models can not intrinsically achieve human-analogous understanding of natural
languages (Bender and Koller, 2020; Žabokrtskỳ et al., 2020). Computational
linguists attempt to capture syntactic and semantic features by means of
constructing meaning representation frameworks. Through such frameworks,
researchers have been exploring linguistic phenomena such as quantification
(Pustejovsky et al., 2019), coreference (Prange et al., 2019), and word sense
(Schneider et al., 2018).

However, most efforts were put into studying linguistic complexity super-
ficially, rather than the more latent, implicit omission of arguments in an
event. For instance, in the sentence “Just take the money!”, the addressee
who should “take the money” is left out. Such omission cannot be recovered
directly from the text in the way of gapping or ellipsis, but require a higher
level of understanding and inference from the context. Traditional studies
approach argument omission from different aspects, namely syntactically,
semantically, or pragmatically. The interpretation of implicit roles varies to
a great extent, from phonological deleted role during production (Mittwoch,
1971; Perlmutter, 1968; Pérez-Leroux et al., 2018) to timecourse reference
omission from a psycholinguistic aspect (Garrod and Terras, 2000). However,
few studies have explored the implicit role phenomenon in NLP.

1



CHAPTER 1. INTRODUCTION 2

In this paper, we propose a fine-grained cross-linguistically applicable
implicit argument annotation typology as a refinement for Universal Con-
ceptual Cognitive Annotation (Section 2.1; Abend and Rappoport, 2013)
categories. The typology follows UCCA’s design concept, focusing on the se-
mantic notion of Scene rather than linguistic form phenomena. The proposed
implicit argument set contains six categories: Deictic, Generic, Genre-based,
Type-identifiable, Non-specific, and Iterated-set. We refine the existing UCCA
relation labels and add information to them, while keeping all categories from
the underlying annotation.

Based on the proposed typology, we conduct a pilot annotation study,
including revisit and refinement of the UCCA EWT dataset,1 and subsequently
make a comparative analysis with the only other existing fine-grained implict
role annotation scheme, Fine-grained Annotations of Referential Interpretation
Types (FiGref; O’Gorman, 2019).

Thereafter, We design the first transition-based parser that has the ability
to parse fine-grained implicit arguments for meaning representations and
evaluate its performance on the pilot UCCA Implicit EWT dataset. At the
end, we discuss the objectives of this work and the challenges to face with in
the future research of implicit arguments.

A few studies have explored the possibilities to parse implicit arguments.
Both Gerber and Chai (2012) and Cheng and Erk (2019) have developed
parsers to recover implicit arguments for nominal predicates; Bender et al.
(2011) parse against some linguistic constructions, two of which could license
implicit arguments, that is, tough adjectives and verbal gerund; Elazar and
Goldberg (2019) focus on resolving missing numeric fused-heads, which are
implicit Centers in UCCA.

Providing the most up-to-date and fine-grained annotation of implicit ar-
guments, our studies can potentially enhance natural language understanding
with the parser. For example, when companies conduct satisfaction analyses
through web reviews, customers often express themselves colloquially in these
reviews. Examples include “Serves bad ice cream, Joe’s is better” and “Near
a nice district, bad service and expensive.” If these reviews are annotated
with Genre-based implicit arguments, referring to the conventional omission

1https://github.com/ruixiangcui/UCCA-Refined-Implicit-EWT_English
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of reviewees, algorithms can study which part of the reviews really refers to
the companies rather than other entities, and make better predictions, despite
the omission of subjects and non-standard language.



Chapter 2

Background and Related Work

2.1 Universal Conceptual Cognitive Annota-
tion

Universal Conceptual Cognitive Annotation is a semantic representation
scheme whose design concept comes from the Basic Linguistic Theory typo-
logical framework (Dixon, 2010a,b, 2012) and Cognitive Linguistics literature
(Croft and Cruse, 2004). Abstracting away from syntactic forms, it aims
at representing the main semantic phenomena in text while maintaining a
low learning cost and rapid annotation by non-experts (Abend et al., 2017).
Already providing datasets in English, French, and German, UCCA has
demonstrated its cross-linguistic applicability in several languages and has

IMPNon−specific

A
Have

D

a
F

real mechanic
C

A
check

P

H
before

L

you
A

leave
P

IMPNon−specific

A

H

A

D

Fig. 2.1 Example of UCCA graph: “Have a real mechanic check before you leave.”.
Abbreviation of UCCA edge labels is explained in Table 1. The dashed line stands
for Remote edge. In this case it is a coreference "you". An IMP represents an
Implicit argument denoting a null-instantiated core element in its corresponding
Scene.
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CHAPTER 2. BACKGROUND AND RELATED WORK 5

become a popular target framework in multiple parsing tasks (Hershcovich
et al., 2019b; Oepen et al., 2019). Abend et al. (2017) have also developed an
open-source web-based annotation system, UCCAApp, which supports fast
annotation for linguistic representations. The effectiveness and efficiency in
annotating and refining UCCA have been proven by several studies (Prange
et al., 2019; Shalev et al., 2019).

Participant A Linker L
Center C Connector N
Adverbial D Process P
Elaborator E Quantifier Q
Function F Relator R
Ground G State S
Parellel Scene H Time T

Table 2.1 Legend of UCCA edge cate-
gories (Hershcovich et al., 2019a)

UCCA presents the meaning of a
sentence with a directed acyclic graph
(DAG) whose terminal nodes corre-
spond either to surface lexical tokens
or extra units representing implicit ar-
guments (Figure 2.1). Non-terminal
nodes correspond to semantic units
that participate in some super-ordinate
relation. Edges are labeled with the
role of a child node related to its par-
ent node. The basic notion in UCCA is
Scene, describing a state, action, move-
ment, or some other relation that evolves in time. Each Scene involves one
main relation (Process or State), and one or more Participants, including
locations, abstract entities and sub-Scenes serving as arguments.

Furthermore, UCCA distinguishes primary edges, appearing explicitly in
one relation, from remote edges, allowing a Scene to indicate its arguments by
linking from another Scene. Primary edges form a tree while Remote edges
allow reentrancy, forming a DAG. In some cases, an entity of importance
in the interpretation of a Scene does not explicitly exist in the text. Hence,
UCCA introduces the notion of Implicit Units to represent such kind of entity.

For instance, the sentence “Have a real mechanic check before you leave” in
Figure 2.1 contains two Scenes, evoked by “check” and “leave”. The individual
Scenes are annotated as follows:

1. “(You)A haveD[aF realD mechanicC ]A checkP IMP1A”

2. “YouA leaveP IMP2A”
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“A mechanic” is a Participant in the first Scene, while “You” is Participant
in both Scenes, as Remote constituting reentrancy in the first one (shown
in dashed line), but explicit in the latter super-ordinate relations. In the
first Scene, “Check” is the main Process used in the causative construction,
requiring three Participants. While “You” refers to the customer making
a request and “a real mechanic” is the service provider who should check
something, the object that needs to be “checked” is missing. Therefore, we
introduce an IMP A node to symbolize it. In the second Scene, “leave” is the
Process meaning someone moves away from a source location. Although we
state our little concern for non-core elements like location in this study in
§3.1, the case is different for the “leaving” Scene since the source location is
vital to the understanding of the departing action. For this reason, we add
an IMP A to represent the place that is being left.

2.2 Implicit Argument
In UCCA’s foundational layer, only limited cases of implicit arguments
have been annotated. The main focus is on omission licensed by certain
grammatical structures,1 whose notion is similar to Constructional Null
Instantiation in FrameNet (Ruppenhofer et al., 2006). Two typical examples
of such constructions are imperatives (forced omission of subjects) and passives
(agent omission) in English:

1. Imperative: IMPA DoF n’tD botherP .

2. Passive: [TheF doctorC ]A hasF alreadyT beenF paidP IMPA.

Several other kinds of constructions are mentioned in UCCA foundation layer
guidelines, such as infinitive clause, gerund, and thank construction.

3. Infinitive clause: IsF thereF [noE otherE VerizonC ]A IMPA toF goP toR

[aroundR downtownC ]A?

4. Gerund: HowD addictingS IMPA goingP [toR Fitness UnlimitedC ]A
canF D beF !”

1https://github.com/UniversalConceptualCognitiveAnnotation/docs/
blob/master/guidelines.pdf
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5. “Thank” construction: IMPA ThanksP , JohnA!

The annotation of implicit arguments in UCCA’s foundation layer is
restricted to certain linguistic constructions, which is coarse, language-specific,
incomplete, and unlike other distinctions in UCCA, is based on criteria of
form rather than meaning. We are faced with the challenge of maintaining
UCCA’s idiosyncrasy of differentiating Remote and Implicit while extending
its boundary to include a rather refined categorisation for implicit roles.

FrameNet (Baker et al., 1998) is a source of inspiration for UCCA and
Scenes can be seen as frame evocations. FrameNet developed Fillmore (1986)’s
notion of null-instantiation into three types—Constructional Null Instantiation
(CNI), licensed by grammatical constructions, Definite Null Instantiation
(DNI), equivalent to core Frame Elements mentioned previously in text or
inferrable from the discourse, and Indefinite Null Instantiation (INI), an
element that is unknown and nowhere to be retrieved.

Nevertheless, this trichotomy treats unfavourably many cases where im-
plicit roles occur, such as Free Null Instantiation (FNI; Fillmore and Kay,
1993) and Identity of Sense Null Anaphora (ISNA; Kay, 2004). FNI is nei-
ther restricted to definite nor indefinite null arguments, and ISNA is null
instantiation within noun phrases. Lyngfelt (2012) even argues that the
unclear definition of FNI leads to much false categorisation—some FNIs are
unspecified, some are generic, and some should be considered DNI.

UCCA’s foundational layer mainly focuses on CNI, that is, the current
annotated datasets only include grammatically licensed implicit arguments. So
far, only a few corpora for implicit role labelling have been proposed, such as
SemEval-2010 Task 10 (Ruppenhofer et al., 2009), Beyond NomBank (Gerber
and Chai, 2010, 2012), Stern and Dagan (2014), and Multi-sentence AMR
(O’Gorman et al., 2018). But none of them is based on a more comprehensive
fine grained implicit role characterisation theory aside from FiGref, refined
on three corpora mentioned above for recoverability studies.

Although FiGref is not available to the public, O’Gorman (2019) has coun-
terbalanced previous studies on implicit role description and synthesized an
inventory of eleven interpretation types for implicit roles distinguished by their
referential behaviours. They are Script-inferrable pragmatic, Salient/recent,
Deictic, Remembered Roles of Event Reference, Implicit “Sloppy anaphora”
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and Bridging, Genre-based Default, Type-identifiable, Generic (“People in
General”), Cataphoric, Low-information, and Iterated Events Implicit Roles.

Recoverable implicit roles fall into the category of Remote Participants in
UCCA, which typically calls for coreference resolution (Prange et al., 2019).
We discern the eleven types of implicit roles mentioned above, recoverable or
not, and extract those types where only true Implicit arguments occur, that
is, the argument cannot be explicitly recovered from text, but inference and
non-specificity are allowed as they are aligned with the definition of implicit
arguments of UCCA. In the following section, we will analyze these implicit
role types and argue the appropriateness of the set of categories we choose.

2.3 Parsing Methods
A limited number of studies attempt to parse implicit roles in semantic rep-
resentations, though not fine-grained unrecoverable ones. Parsing implicit
argument as an NLP task was introduced by Gerber and Chai (2010, 2012)
and Ruppenhofer et al. (2009). A few researchers lay eyes on parsing implicit
arguments on a coarse-level, which appear in the company of nominal predi-
cates. Bender et al. (2011) extracted a dataset from Penn Treebank (Marcus
et al., 1993) where 10 frequent linguistic phenomena occur, and investigate
the depth of linguistic analysis. Among these 10 phenomena, tough adjectives
and verbal gerund, tend to induce implicit arguments in the sentences. They
ran seven parser systems, namely Stanford Parser (Klein and Manning, 2003),
Charniak&Johnson Reranking Parser (Charniak and Johnson, 2005), Enju
(Miyao et al., 2004), C&C (Clark and Curran, 2007), RASP (Briscoe et al.,
2006), MSTParser (McDonald et al., 2005), and XLE/ParGram (Riezler et al.,
2002), and used linguistic-phenomena-specific regular expressions to associate
parsers’ output with target dependencies. However, this study is restricted to
identify certain linguistic phenomena rather than aiming at implicit arguments
in general; neither has it made an effort to categorise their properties.

Roth and Frank (2015) introduced a rule-based induction method for
identifying implicit arguments, which depends on semantic role labelling anno-
tations, predicate-argument alignment, and coreference resolution techniques.
Nevertheless, they refrained from differentiating implicit role types. Cheng
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and Erk (2018) build on Granroth-Wilding and Clark (2016)’s narrative cloze
model to deal with argument cloze task, with more focus on entity-specific in-
formation. Then they evaluated the model on G&C dataset (Gerber and Chai,
2010) and achieved competitive performance. However, the G&C dataset
was annotated within Nombank (Meyers et al., 2004) on paragraph level,
and it was limited to instances where 10 heterogeneous themantic nominal
predicates occurred. Similar to Roth and Frank (2015), several other works
proposed parsing methods for SemEval 2010 data (Chiarcos and Schenk, 2015;
Schenk and Chiarcos, 2016; Silberer and Frank, 2012) but they also only able
to parse implicit arguments on a coarse level as well.

As for UCCA parsing, Hershcovich et al. (2017) first proposed a transition-
based directed acyclic parser for UCCA. Hershcovich et al. (2018) then
extended the parser using multitask learning, leveraging other meaning repre-
sentations’ data such as Abstract Meaning Representation (AMR; Banarescu
et al., 2013), Semantic Dependency Parsing (SDP; Oepen et al., 2016) and
Universal Dependencies (UD; Nivre et al., 2019, 2016). SemEval-2019 Task 1:
Cross-lingual Semantic Parsing with UCCA (Hershcovich et al., 2019b) and
MRP 2019 Task: Cross-Framework Meaning Representation Parsing (Oepen
et al., 2019) further boosted parsing technologies for UCCA. Among these
tasks, several prominent works stand out. Specifically, HLT@SUDA (Jiang
et al., 2019) converts UCCA graph to constituent tree and used Constituent
Tree Parser and BERT word embeddings (Devlin et al., 2018) as extra fea-
tures; HIT-SCIR in MRP 2019 (Che et al., 2019) proposed a transition-based
neural parser for UCCA using stacked long short-term memory network and
BERT as well; Zhang et al. (2019) leveraged attention mechanism to build
a neural transducer which is able to generate UCCA graph via semantic-
relation sequences incrementally. Unfortunately, none of these parsers, to our
knowledge, is able to parse implicit argument and label them flexibly.



Chapter 3

Refining Implicit Argument
Annotation

3.1 Forming UCCA Implicit Argument Ty-
pology

For the sake of operability and consistency, we only focus on core arguments
in Scenes where these arguments are essential to the meaning of correspond-
ing predicates Goldberg (1992); Grimshaw (1993); Jackendoff (1992, 1997).
Elements such as location, time, and manner are of little interest in this study
whilst they are able to appear as foundational units or Remote Participant in
UCCA.

As UCCA distinguishes Remote edges from Implicit units, it is natural to
take advantage of this property to account for argument recoverability. The
definition of implicit arguments in UCCA, particularly for its strong emphasis
on the inability of explicit recovering from text, is not strictly corresponding
with the eleven implicit role types.

Table 3.1 shows the comparison of the primary eleven implicit role types
and UCCA’s implicit argument set. Among these types of implicit roles in
his inventory, four are definite implicit role constructions, viz. Salient/recent,
Remember Roles, Script-inferrable, and Deictic. Only the last one of four, De-
ictic, we would consider a candidate category for UCCA’s Implicit arguments.
Salient/recent roles, which can be directly found in the recent prior discourse,

10
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O’Gorman’s Set Implicit Indefinite Edge Cases UCCA’s Typology
Salient/recent X 7

Remember Roles X 7

Script-inferrable X 7

Deictic X Deictic
Cataphoric X 7

Low-information X Non-specific
Iterated Events X Iterated-set
Bridging X 7

Genre-based X Genre-based
Generic X Generic
Type-Identifiable X Type-Identifiable

Table 3.1 The primary eleven implicit role types and the set for UCCA’s implicit
argument typology

is the quintessential type of DNI, and they can be easily replaced by pronouns.
Remember Roles and Script-inferrable roles, however, require a cognitive and
reasoning process, as the referents can be understood through a common
ground in the text shared between the speaker and the addressee, or are
reflecting a different facet of the same or a subordinate event. Deictic roles,
albeit explicit reference to the speaker or addressee, is an extra-linguistic and
cannot be annotated as Remote Participant, since we are unable to retrieve
them explicitly in the text. Therefore, we incorporate it in our set of Implicit
arguments categories.

Three out of eleven implicit roles are marked as clearly indefinite argu-
ments, namely Cataphoric, Low-information Arbitrary role, and Iterated
Events Implicit Roles. Cataphoric, which Bhatia et al. (2014) define as “prag-
matically specific indefinite”, is the only type we do not include in UCCA’s
typology since it relies heavily on the interpretation of the discourse whether
it will be referred to again. We would annotate it as Remote Participant if
the role is mentioned in a later text, or Non-specific type if not so as not to
complicate the reasoning process.

The other four, Bridging implicit roles, Genre-based Default, Generic and
Type Identifiable, are regarded as edge cases. Once again, we will only admit
the latter three in our typology. As far as we are concerned, bridging in ellipsis
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situations might not refer to the same referent conceptually. Nonetheless,
it can be clearly resolved in the text. Therefore, it will be annotated as a
Remote edge in UCCA.

We will focus on referents that do not appear anywhere in the text.
Therefore, we follow the philosophy of UCCA and propose six categories of
implicit argument, that is, Deictic, Generic, Genre-based, Type-identifiable,
Non-specific and Iterated-set. In the next section, we will present and
exemplify each one of them.

3.1.1 Categorisation Set for UCCA Implicit Arguments
Deictic

Deictic implicit arguments specifically refer to the speaker or the addressee
in a sentence. In example 1, the second-person subject is exhorted to take a
certain action, and such imperative construction allows the subject not to
appear in the text explicitly. Shown in example 2, Deictic can also occur with
certain interjections, where the subject as the speaker is habitually implicit.

(1) JustD askP themA exactlyE whatC [youA wantS (what)A]E IMPDeictic.

(2) [Thank you]P guysG/A IMPDeictic.

It should be mentioned that only in certain languages is imperative likely
to induce implicit arguments.

As an execption, in morphologically rich languages, deictic information
tends to be encoded morphologically due to person agreement Ingram (1971).
For example, in Spanish “Estoy caminando.”, the verb inflectionalready en-
codes Participants, indicating it is “ I” that performed the action. There-
fore, it would be annotated as “Estoy caminandoA+P .” rather than “Estoy
caminandoP IMPDeictic”.

Generic

Generic implicit arguments denote “people in general” (Lambrecht and
Lemoine, 2005). In example 3, the agent who “understands how this place
has survived the earthquake” is not explicitly mentioned in the text, but it
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can be understood as it is the set of people in general. Example 4 can be
construed as a gerund construction. “I” recommend taking a certain action.
While the patient would not be specific, it conveys the message that “people
in general” should follow such advice.

(3) ItF ’sF impossibleD toF understandP [howC [[thisE placeC ]A hasF

survivedP [theF earthquakeC ]A]E]A IMPGeneric.

(4) IA wouldF recommendP [notD usingP [thisE companyC ]A IMPGeneric]A.

Genre-based

Ruppenhofer and Michaelis (2010) found certain text genres, namely in-
structional imperatives, labelese, diary style, match report, and judgment-
expressing quotative verbs, are closely linked with conventional omission.
UCCA EWT corpus is based on online reviews of businesses and services by
individuals. The review genre is so prominent acoss all dataset that it forms a
pattern where the reviewers do not bother to mention the reviewees explicitly.
In example 5 and 6, the review genre licenses the omission of the deliverer
of the action “deliver” and server of the action “serve”, as they refer to the
reviewees by default, because in both contexts it is the restaurants that are
being reviewed.

(5) DeliveryP isF [lightningE fastC ]D IMPGenre−based IMPNon−specific!

(6) [GreatD serviceP IMPGenre−based IMPGeneric]H andL [awesomeS pricesA]H .

Type-identifiable

There exist some predicates allowing listeners to naturally think they “know”
the omitted referents because of their high predictability. In example 7, the
vague referent of “eat” can be understood from an inherent understanding of
the listeners as “some kind of food“. In example 8, the thing that “I drive” is
not mentioned. Instead, it comes from common sense that the referent should
be a kind of vehicle. Whatever kind it is, the lack of explicit mention barely
affects the understanding of the text.
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(7) ItA isF myA favouriteS [placeC [(my)A toF eatP IMPT ype−identifiable]E]A.

(8) IA ’llF driveP [anQ hourC ]T [justE forR [theirS (volcano)A]E volcanoC ]A
IMPT ype−identifiable.

Non-specific

Non-specific implicit arguments refer to the kind of referents that cannot
be inferred or understood at all. Such required information absent from
the context attributes to the low interpretability of the implicit arguments,
leaving them non-specific. As in example 9 and 10, it is impossible to infer
what is “delivered” or who “charged me“ neither from common knowledge
nor given context. Such kind of implicit arguments are commonly found in
nominalization and passive because there are high possibilities that not all
agents/patients are always mentioned despite the fact that they might be
core frame elements.

(9) ThereF isF noD deliveryP IMPGenre−based IMPNon−specific.

(10) IA donF ’tD thinkP [IA haveF everT beenF chargedP beforeT IMPNon−specific]A.

Iterated-set

Iterated-set implicit arguments refer to a heterogeneous set of entities when
the predicates are often an action that happens repeatedly, either iteratively
or generically (Goldberg, 2001). For example, in sentence 11, the predicate
“wait” implies high repetition, and the set of patients of “what/who I am
waiting for” is so general that it does not hold any meaning beyond the
context. As in example 12, the action “ steal” designates a Scene where
anything could be stolen, but “I” do not and will never steal. Unlike §3.1.1
Type-identifiable referring to a specific type of referents, the set of “things” in
Iterated-set points to a vague set of entities to fill a role in a more functional
way.

(11) IA neverT waitP [inR theF waitingE roomC ]A [[moreC [thanR twoC ]C ]Q
minutesC ]T IMPIterated−set.

(12) IA donF ’tD stealP IMPIterated−set.
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3.1.2 Inherent Ambiguity and “Continuum” of Core-
ness

Category Priority

There are a few cases when it is difficult to choose between two categories.
Since UCCA does not aspire to annotate all possible interpretations (Abend
and Rappoport, 2013), the annotator should make a best guess and choose
one option. The first one is between Deictic and Generic, shown in example
13. The second one is between Genre-based and Non-specific, as in example
14. To keep the annotation consistent and maintain as much information
as possible, we always choose Deictic over Generic, and Genre-based over
Non-specific if available.

(13) [TheF experienceC ]A [withR everyQ departmentC ]A hasF beenF greatD

IMPDeictic.

(14) IA willF definitelyD referP [[myA friendsA/S]C andN [(my)A familyA/S]C ]A
IMPGenre−Based.

Nominalization As Occupation

It is a judgment call whether the patient of Process instantiated by a profession
should be annotated at all. Even so it remains debatable which category such
kind of implicit argument belongs to. In the current version of corpus, we
will always annotate it as Type-identifiable. As in example 15, the patients of
whom has been taught is unclear but neither require clarification. The Scene
of teacher/teaching is annotated with a Type-identifiable implicit argument
denoting a type of people recieving education.

(15) TheyA areF [veryE goodC ]D teachersA/P IMPT ype−identifiable.

3.2 Refined Implicit Corpus
In furtherance of investigating the characteristics of UCCA’s implicit argu-
ments, we piloted a study to revisit and refine part of English Web Treebank1

1https://catalog.ldc.upenn.edu/LDC2012T13
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# Passages # Passages # Sentences # Sentences # Implicit
w/ Implicit w/ Implicit (Valid)

Original 200 (out of 723) 103 306 111 153 (98)
Refined 200 116 393 221 415 (385)

Table 3.2 Statistics of the UCCA EWT dataset sampled passages before and after
reviewing. The additional implicit arguments result from both refining UCCA EWT
and conducting new annotation according to out fine-grained typology. Implicit
(Valid) denotes implicit argument whose role is Participant in UCCA.

annotated with the UCCA foundational layer.2 200 passages were randomly
selected for experiment from the total 723 passages comprising the UCCA
EWT dataset.

We use UCCAApp to carry out annotation. The process is divided
into two stages. Firstly, we create passage-level review tasks to check the
existing annotation whether they contain implicit arguments, and add missing
arguments if necessary. Secondly, we split passages into sentences, create
tasks with refinement layer and then annotate with corresponding fine-grained
implicit categories. Since all the annotation works were undertaken by one
single annotator, the dataset preferably serves as a demonstration of concept,
and thus further measurement of inter-annotator agreement would be desired
to establish a more sound dataset.

3.2.1 Revisiting Original EWT UCCA Dataset
The original implicit argument annotation in EWT UCCA corpus is restricted
only to put concern on constructional null instantiations, and when a unit
lacks a Center or a Process/State, which is out of the scope of this study.
We only regard implicit argument whose category is Participant in UCCA as
valid implicit in this research. Therefore, it is necessary to check and refine
the dataset. Considering the original corpus was annotated on passage-level,
whereas our new dataset will be done on sentence-level, Remote edges across
sentences will be treated by adding a new Implicit node under its origin Scene.

2https://github.com/UniversalConceptualCognitiveAnnotation/UCCA_
English-EWT
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Table 3.2 shows the statistics before and after reviewing according to
the new UCCA Implicit Argument Typology. It can be seen that in the
refined dataset, 116 out of 200 passages contain implicit arguments, 13 more
passages than the original dataset, in which only 103 passages contain implicit
arguments. Yielding an increase of 255%, the review process added 250 more
valid implicit arguments in the corpus.

3.2.2 Statistics
Tokenized and split according to the Universal Dependencies English Web
Treebank (Hershcovich et al., 2019a; Silveira et al., 2014), this pilot corpus
consists of 3702 tokens, 1411 nodes, and 4759 edges over 393 sentences. In total,
385 valid implicit arguments are found and annotated on 221 sentences. Figure
3.1 demonstrates each implicit argument category with its corresponding
number in the pilot refined implicit corpus, and illustrates the percentage
of each implicit category in the dataset. One can see that Genre-based and
Non-specific are the two most frequent categories, both of which have more
than 100 instances in the dataset, making up approximately 52% combined.
They are followed by Generic and Deictic, and each occupies about 17%.
Type-identifiable comes penultimate with 39 instances, while Iterated-set is
the least frequent type, which merely has 12 instances, accounting for 3.12%
of the whole corpus.
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Fig. 3.1 Statistics of pilot UCCA implicit dataset
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Type-Identifiable Deictic Generic Non-specific Genre-based Iterated-set Script-inferrable Other Invalid
Ours 9.79% 17.29% 17.29% 25.93% 25.93% 2.59% \ \ \
FiGref 7% 5% 10% 4% \ \ 9% 12% 53%

Table 3.3 Relative frequency of annotated implicit types in UCCA’s refinement
layer and FiGref’s annoation for non-recoverable roles in Multi-sentence AMR.
The first four types are shared by both annotation corpora. The following two are
exclusive to UCCA’s refinement layer. The last three are additonally introduced
into FiGref’s set of interpretation types.

3.2.3 Comparisons to FiGref Annotation
FiGref is annotated over Multi-sentence AMR training data, SemEval-2010
Task 10 training data, and Beyond NomBank. It contains 856 implicit roles
classified into 14 types, which includes all 11 proposed interpretation types
except Genre-based, and four more kinds of invalid roles to account for those
implicit roles of low importance or deal with tricky occasions. However,
FiGref has a relatively low Cohen’s κ score (Cohen, 1960) of 55.2 due to its
ambiguity and relatively high annotation complexity.

Comparatively, we do not annotate genuinely invalid implicit role in the
implicit argument refinement layer for UCCA since we consider it is not a
core element of the event Scene. As UCCA differs Implicit units from Remote
edges, it naturally reduces the annotation complexity as we only need to
annotate essential and unrecoverable implicit arguments within the set of six
types we propose in §3.1.1.

Owing to the distinct annotation design and lack of statistics provided by
FiGref, it is difficult to perform a comparative quantitative study between
UCCA’s implicit refinement layer and FiGref. However, we are able to look
into the relative frequency of annotated implicit types in UCCA and FiGref’s
annotation for non-recoverable roles in Multi-sentence AMR shown in Table
3.3.

The distribution distinction can be possibly explained by the different
domains of the corpora and their annotation methodology. We keep Genre-
based type to account for the particular “review” genre in EWT dataset.
Among the three types FiGref has introduced, We can see that invalid roles
dominate the FiGref annotation with 53%. This is because a large amount
of non-important interpretations of null-instantiation are taken into account
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in FiGref, whereas the implicit refinement annotation designed for UCCA is
limited to essential important implicit arguments so as to lower annotation
complexity and ambiguity.



Chapter 4

Parsing Implicit Arguments in
UCCA

4.1 Transition-Based Dependency Parser
In recent years, the area of computational semantics has seen remarkable ad-
vances in parsing technologies, where research’s target shifts from parsing tree-
structured representations to the more expressive beyond-syntax graph-based
representations, with the aim of representing sentence-level semantic structure
more adequately (Oepen et al., 2019). Along with factorization-based pars-
ing, composition-based parsing and translation-based parsing (Zhang et al.,
2019), transition-based architecture is one of the widest adopted methods for
meaning representation parsing, which has its origin in syntactic dependency
tree parsing (Nivre, 2003; Yamada and Matsumoto, 2003). What differs
transition-based meaning representation parsing from dependency parsing is
that the semantic representation is more elaborated with higher computation
complexity due to the existence of attributes, properties, labels of nodes or
edges, non-terminal nodes, various types of node anchoring, edge reentrancies
and discontinuous constituency.

A transition-based parser will take the representation of parsing state as
input and predict a most probable transition action. The parser will then be
used to reconstitute the representation graph in a deterministic way. The
set of transition actions can vary out of different consideration. Typically,

20
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Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E Shift S | x B V E −
S | x B V E Reduce S B V E −
S | x B V E NodeX S | x y | B V ∪ {y} E | (y, x)X − x 6= root
S | x B V E ImplicitX S | x y | B V ∪ {y} E | (x, y)#

X −
S | y, x B V E Left-EdgeX S | y, x B V E | (x, y)X −

S | x, y B V E Right-EdgeX S | x, y B V E | (x, y)X −





x /∈ w1:n,
y 6= root ,
y ∧G x

S | y, x B V E Left-RemoteX S | y, x B V E | (x, y)∗
X −

S | x, y B V E Right-RemoteX S | x, y B V E | (x, y)∗
X −

S | x, y B V E Swap S | y x | B V E − i(x) < i(y)
[root] ∅ V E Finish ∅ ∅ V E +

Table 4.1 The transition set of Refined Implicit Parser. We write the stack with its
top to the right and the buffer with its head to the left. (·, ·)X denotes a primary
X-labelled edge, (·, ·)∗

X a remote X-labelled edge, and (·, ·)#
X an X-labelled edge to

an implicit node. i(x) is a running index for the created nodes. The prospective
child of the Edge action can not have a primary parent. The newly generated node
by Implicit action is prohibited to have any descendent. This table is adapted
from Hershcovich et al. (2017).

Shift, Reduce, Leftarc, Rightarc are employed as basic actions for
transition parsers (Nivre, 2003; Yamada and Matsumoto, 2003). Among
others, Node action is designed to generate concept node when it is not
anchored to word tokens from the input (Hershcovich et al., 2017). Their
work has also proposed Leftremote and Rightremote to deal with edge
reentrencies.

HIT-SCIR (Che et al., 2019) achieved best performance for UCCA parsing
in MRP 2019 (Oepen et al., 2019). In this thesis, we will look HIT-SCIR
2019 as the prototype parsing system, inheriting two advantages; we use
stack LSTM to stabilize gradient descent process and speed up training;
we enrich contextual information by employing pre-trained language model
BERT word embeddings as a feature input. We extend the parser so that it
can read implicit node properly; then we add an Implicit transition action
so that implicit node can be dynamically generated and labelled. In the next
subsection, we describe the set of transition actions that we include in our
parsing system.
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4.1.1 Transition System for Parsing Implicit Arguments
Our parsing state design is based on that of Nivre (2003). A stack S holds
processed words. B is a buffer containing tokens or nodes to be processed. V

is a set of nodes, and E is a set of edges. We denote s0 as the first element on
S and b0 as the first element on B. Given a sentence composed by a sequence
of tokens {t1, t2, ..., tn}, the parser is initialized to have a Root node on S, and
all surface tokens in B. The parser will at each step deterministically choose
the most probable transition action based on its current parsing state. Oracle
action sequences will be generated for training on gold-standard annotations.

Based on HIT-SCIR 2019 parser, our transition system incorporate all
of their 9 transition actions, that is, Left-edge, RIght-edge, Shift,
Reduce, Node, Swap, Left-remote, Right-remote and Finish. We
improve the parser by introducing a new transition action Implicit so that
in spite of no existing element on buffer corresponding to implcit arguemnt,
when the parser encounters one, an implcit node can be generated and add
labelled dependency arc accordingly.

Table 4.1 shows the transition set. We describe in detail the ten transition
actions below.

• Shift: Together with Reduce below, these two are the most standard
actions in transition process. Shift is performed when there does not
exist arc between b0 and any element in S other than s0. It will push
all elements in list and s0 into S.

• Reduce: Pop s0 from the S when it is neither parent nor child of any
element in the B.

• NodeX : Modelling after transition-based constituent parsing (Sagae
and Lavie, 2005), Node transition creates a new non-terminal node.
Such node will be created on the buffer by NodeX transition, which is
a parent of s0 on the S with X-labelled edge.

• Swap: To deal with non-planar graph (generalization of non-projective
trees), in another word, discontinuous constituents, Swap pops the
second node on the S and add it to the top of the B.
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• Left-EdgeX and Right-EdgeX : These two actions add an X-labelled
primary edge between the first two elements on the S. When the first
element is the parent of the second element on the S , Left-EdgeX is
executed; in reverse, Right-EdgeX will be chosen when the second
element has the first element as its child. The left/right direction is the
same as where the arc points to.

• Left-RemoteX , Right-RemoteX : Similar to Left-EdgeX and
Right-EdgeX , yet these two transitions create remote edges aiming
at solving reentrencies. The X-labelled edge will be assigned a Remote
attribute.

• Finish: The terminal transition. Finish pops the Root node and marks
the transition state as Terminal.

• Implicit: See below.
Besides the nine transition actions described above, we introduce Im-

plicitX action. Such action creates a new concept node on the B as the
child of the first element on the S, with an X-labelled edge. The Implicit
action is different from Node action in the sense that the one-step generated
dependency arc is the child of the element on the S rather than its parents
like what Node does. Equally importantly, the new node is prohibited have
any child in contrast to the kind of nodes Node action generates.

4.2 Stacked Long Short-Term Memory Net-
works

LSTMs are developed to cope with the vanishing gradient problems in recur-
rent neural networks (RNNs) (Graves, 2013; Hochreiter and Schmidhuber,
1997). At each timestep, RNNs take a vector xt and compute a new hidden
state ht by concatenating the hidden state of previous timestep ht−1 and the
input, applying a linear map to it, and passing the output to a logistic sigmoid
function. RNNs is designed to model long-range dependencies. Nonetheless,
it suffers from an exponential decay in the error signal with time due to the
constant application of suqashing function.
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LSTMs improved on RNNs by using a memory cell ct to represent the
combination of state ht−1 and vector input. LSTMs also use three gates:
input gate it controls the proportion of the current input to flow into the cell
ct; forget gate ft, controls the proportion of the previous memory to remain
in the cell ct;

it = σ (Wixxt + Wihht−1 + Wicct−1 + bi) (4.1)
ft = σ (Wfxxt + Wfhht−1 + Wfcct−1 + bf ) (4.2)

ct = ft � ct−1 + it � tanh (Wcxxt + Wchht−1 + bc) , (4.3)
(4.4)

output gate ot controls the proportion of the value in the current cell
ct to be used for computing the output activation of the LSTM. σ is the
element-wise sigmoid function and � is the element-wise Hadamard product.

ot = σ (Woxxt + Wohht−1 + Wocct + bo) (4.5)
ht = ot � tanh (ct) . (4.6)

Dyer et al. (2015) proposed a parsing model that uses stack Long Short
Term Memories (stack LSTM). The model introduces an additional stack
pointer to conventional left-to-right LSTM so that the location of the stack
pointer can determine which cell in the LSTM provides ct−1 and ht−1 for
computing the new memory cell. Shown as Figure 4.1, The stack LSTM has
three operations: Pop operation can move the stack pointer one position
back pointing to the previous element; Insert operation adds a new element
at the end of the list. The element has a back pointer to the previous top;
Query function returns the output vector that the stack pointer points to.

Therefore, the transition parser represents the stack S, buffer B and action
history with stack LSTM, and will output a transition action a at state s
that maximizes the score, which is computed as follows (Che et al., 2019):

p(a|s) = exp {ga · stack LSTM(s) + ba}
P

a0 exp {ga0 · stack LSTM(s) + ba0} . (4.7)
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Fig. 4.1 Visualization of stack LSTM (Dyer et al., 2015). top indicates the stack
pointer. This figure schematizes three steps: a stack with a single element, the
result after Pop and the result after Insert operation.

stack LSTM encodes the state s into a vector. ga and ba represent the
embedding vector and bias vector of action a respectively. For stack LSTM,
Pop and Query functions do not require heavy computing to the exclusion
of the Insert operation. Therefore, Che et al. (2019) propose to use batch
training for speeding up training and increase gradient stability (Kiperwasser
and Goldberg, 2016). The parser constructs batch data on operation level
instead of data level by forming a batch with under-computed operations
between different pieces of data.

4.3 BERT
Recent techniques in language models benefit from pre-training on large
amount unsupervised text, showing the ability to transferring contextual
sentence-level information to improve the parsing accuracy (Devlin et al.,
2018; Howard and Ruder, 2018; Peters et al., 2018).

Previous language models mainly adapt either unidirectional (Radford
et al., 2018) or semi-biderectional architecture (Peters et al., 2018), Deep
Bidirectional Encoder Representations from Transformers (BERT; Devlin
et al., 2018) is the first language model based on multi-layer bidirectional
Transformer (Vaswani et al., 2017) in a way that it joins both left and right
context during training on unsupervised data. BERT is pre-trained over two
tasks, viz. masked language model (MLM) inspired by the Cloze task (Taylor,
1953) and Next Sentence Prediction (NSP).
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Fig. 4.2 BERT input representation (Devlin et al., 2018), which includes token
embeddings, segment embeddings and position embeddings.

In MLM, 15% of tokens from input are randomly masked, and the goal
is to predict the masked tokens based on its context. Unlike traditional
left-to-right pre-training, MLM allows the language model to considerate
context in both left and right direction. Besides, to mitigate the disadvantage
of mismatching pre-traning and fine-tuning, the training data gernerator
would treat the supposed-to-be masked token by (1) replacing it with [MASK]
80% of the time (2) replacing it with a random token 10% of the time (3)
keep it unmasked 10% of the time. Therefore, the Transformer encoder is
forced to keep a distributional contextual representation of every input token
because it would not know which token it should predict or whether a token
has been masked with another token.

In order to capture the relationship between sentences, the Transformer
encoder is pre-trained for a binary Next Sentence Prediction (NSP) task in
which 50% of the time a sentence A is followed by the actual next sentence B,
labelled as IsNext, while the rest 50% of the time it is followed by a random
sentence, labelled as NotNext. The task has been proven to be benificial for
Question Answering (QA) and Natural Language Inference (NLI) (Devlin
et al., 2018). The BERT model segments text into sub-word units using
a wordpiece tokenizer (Wu et al., 2016) with a 30,0000 token vocabulary.
Sentence pairs are packed in a sequence. Every sequence is started with a
special classification token [CLS], whose corresponded representation in the
final hidden state would be used for sequence classification. Between each
sentence, a separator token [SEP] is inserted. In addition, as is shown in
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Figure 4.2, segment embeddings are also learned to tell which sentence every
token belongs to.

We adopt the BERT large cased model (wwm_cased_L-24_H1024_A16) 1

with a self-attention network of 24 layers, 16 attention head per layer, and
hidden dimension of 1024 to encode the sentence. We represent each token
with the first wordpiece of it after applying a scalar mix on all layers of
transformer.

4.4 Data Preprocessing
Since our prototype parser HIT-SCIR 2019 is designed for MRP 2019 task,
it is naturally only able to take MRP format data. Therefore, we need to
convert UCCA XML data to MRP foormat using the open-source mtool
software (the Swiss Army Knife of Meaning Representation) 2. As the UCCA
data provided in MRP 2019 share task did not contains implicit information,
HIT-SCIR 2019 is not able to read our new dataset UUCA Refined EWT.
we modified and enabled the parser to read node properties, and to convert
UCCA data from and to MRP format. The updated version of mtool is
available at Github 3.

With the UCCA data ready in MRP format, HIT-SCIR system is designed
to read input as a set of triple of incoming arc, outgoing arc and arc label.
Therefore, we have to reconstruct the input data further. For node anchoring,
we link the layer 0 nodes with surface tokens with the edge labelled “Terminal”.
In post-processing, we collapse “Terminal” edge to combine surface tokens
and layer 0 nodes, and extract alignment information from how the MRP
2019 share task companion data alignment segmented anchors.

4.5 Evaluation
To evaluate implicit argument detection in UCCA, we compare predicted
graph Gp with implicit arguments Ip to reference graph Gr with implicit

1https://github.com/google-research/bert
2https://github.com/cfmrp/mtool
3https://github.com/ruixiangcui/mtool
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Fig. 4.3 Evaluation example 1: Upper is the golden graph. In the lower graph,
there are a mis-matched implicit node and a wrong-labelled implicit node in red.
The labelled implicit evaluation precision, recall and F1 scores are 0, 0 and 0; The
unlabelled implicit evalutation precision, recall and F1 scores are 0.5, 0.5 and 0.5.

arguments Ir over the same sequence of terminals W = {w1, . . . , wn}. For
an implicit node i in each graph, we look up to its parent node j, marking
the set of terminals spanned by it as the yield y(j) ⊆ W , with edge label
` = (j, i). Given an implicit node in reference graph ir, if an implicit node
in predicted graph ip ’s parent jp yields the same terminals as these of ir ’s
parent jr, and edge label lp matches with lr, we regard it as a correct implicit
match. Define the set of mutual implicit arguments between Gp and Gr:

M(Gp, Gr) = {(i1, i2)∈Ip × Ir|y(j1) = y(j2) ∧ `p(i1) = `r(i2)}

F-score is taken the harmonic mean of labelled precision and recall, defined
by dividing |M(Gp, Gg)| by |Gp| and |Gr|, respectively. Apart from labelled
implicit argument evaluation, we also introduce unlabelled evaluation, which
only requires parents’ spans match.

We demonstrate two examples here. In figure 4.3, reference graph has two
implicit arguments. The parent of the first implicit argument spans {have, a,
real, mechanic, check} and the parent of the second implicit argument spans
{you, leave}. In the predicted graph, there are also two implicit arguments
predicted. The first implicit node’s parent spans {a, mechanic} while the
second one spans the same terminals as the reference graph. We can see that
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Fig. 4.4 Evaluation example 2: Upper is the golden graph with two implicit nodes
marked in blue, indicating they are not detected comparing to the partial matched
graph below. Both their labelled and unlabelled implicit evaluation precision, recall
and F1 scores are 1, 1/3 and 0.5.

for the first implicit argument, their spans do not match—the second matches
but with the wrong label. Therefore, in labelled implicit argument evaluation,
the precision, recall, and F1 scores are 0, 0 and 0. The unlabelled precision,
recall and F1 scores would be 0.5, 0.5 and 0.5. In figure 4.4, the reference
graph has three implicit arguments, Non-specific, Generic and Genre-based
for each. They span {The, service, is, overrated, .}, {The, service} and
{The, service} respectively. The predict graph only manages to predict one
implicit argument with the correct label Non-specific. So in both labelled and
unlabelled evaluation, the precision, recall, and F1 scores are 1, 1/3 and 0.5.

4.6 Experiment Setup
The model is implemented using the open-resource NLP library AllenNLP
built on Pytorch (Gardner et al., 2017). We evaluate the original HIT-SCIR
2019 parser on both the Original UCCA EWT and Refined Implicit EWT and
use it as our baseline for comparison. Default settings are used in both cases.
We use the same hyperparameters as Che et al. (2019) except batch size,
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Hyperparameter Value
Hidden dimension 20
Action dimension 50
Optimizer Adam
β1, β2 0.9, 0.99
Dropout 0.5
Layer dropout 0.2
Recurrent dropout 0.2
Input dropout 0.2
Batch size 4
Epochs 50
Base learning rate 1 × 10−3

BERT learning rate 5 × 10−5

Gradient clipping 5.0
Gradient norm 5.0
Learning rate scheduler slanted triangular
Gradual Unfreezing True
Cut Frac 0.1
Ratio 32

Table 4.2 Implicit Parser hyperparameters.

adjusted from 8 to 4. The hyperparameter setting for our model is listed in
Table 4.2. We do not hyper-tune on either original EWT or Refined Implicit
EWT.

We randomly split train, validation and test sets according to their passage
number with the ratio of 0.75, 0.125 and 0.125. After splitting these 116
passages composed of 393 sentences, we obtained 285, 59, 49 sentences for
train, dev and eval set respectively. Table 4.3 shows detailed statistics of train,
dev and eval set of both original EWT and Refined Implicit EWT, including
numbers of sentences, tokens, nodes, instances of each implicit category and
the sum of implicit arguments.
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4.6.1 Training
We trained the baseline parser (original HIT-SCIR 2019) and Implicit Parser
on both Original UCCA EWT and Refined Implicit EWT. Shown as Table
4.4, the training time is 2 days 22 hours for original HIT-SCIR 2019 on
Original UCCA EWT (50 epochs). Best epoch is 3rd; 3 hours for original
HIT-SCIR 2019 on Refined Implicit EWT (30 epochs). Best epoch is 22nd; 1
day 8 hours for Implicit Parser on Original UCCA EWT (10 epochs), with
the best epoch being the 3rd; And finally, 8 hours for Implicit Parser on
Refined Implicit EWT (50 epochs). The best epoch is 11th. One can see that
both parsers achieved the best performance at early stage on Original UCCA
EWT. However, Implicit Parser took longer time to train on Original UCCA
EWT while the training time was less lengthy on Refined EWT.

Orignial UCCA EWT Refined EWT
Training time # Epochs # Best Epoch Training time # Epochs # Best Epoch

orignial HIT-SCIR 2019 2 days 22 hours 50 3 3 hours 30 22
Implicit Parser 1 day 8 hours 10 3 8 hours 50 11

Table 4.4 Training details of orignial HIT-SCIR 2019 and Implicit Parser on orignial
UCCA EWT and Refined EWT, including training times, the number of best epoch
and total epochs.

4.7 Results
Table 4.5 presents experiment results of four experiments by two parsers, the
original HIT-SCIR 2019 parser as the baseline and our Implicit Parser on
Original UCCA EWT data and Refined Implicit Data respectively. Regarding
performance on Refined Implicit EWT, the baseline is not able to predict
implicit argument as expected. The Implicit Parser managed to reach 0.162
on labelled implicit F-score, and 0.297 on unlabelled implicit F-score.

Based on the evaluation method mentioned in section 4.5, the labelled
precision and labelled recall for Refined EWT are 0.214 and 0.13; the unla-
belled precision and unlabelled recall are 0.393 and 0.239. For primary edge
and remote edge evaluation, noticeably, the Implicit Parser also outperforms
the baseline on primary edges by 0.007 in F-score on Refined EWT. How-
ever, the baseline produced better results for Refined EWT in remote edges
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Primary Remote Implicit
LP LR LF LP LR LF LP LR LF UP UR UF

Baseline on Original EWT 0.710 0.701 0.706 0.547 0.365 0.438
Baseline on Refined EWT 0.495 0.467 0.480 0.538 0.304 0.389 1 0 0 1 0 0
Implicit Parser on Original EWT 0.675 0.597 0.634 0.527 0.344 0.416
Implicit Parser on Refined EWT 0.503 0.472 0.487 0.333 0.1 0.154 0.214 (6/28) 0.13 (6/46) 0.162 0.393 (11/28) 0.239 (11/28) 0.297

Table 4.5 Experiment results on Original EWT and Refined EWT, in percents.
For primary edges, remote edges, and implicit prediction, listed are Labelled Preci-
sion(LP), Labelled Recall (LR) and Labelled F-score (LF). In addition, Unlabelled
precision (UL), Unlabelled Recall (UR) and Unlabelled F-score are also listed for
implicit prediction.

substantially, and Original EWT both in terms of primary edges and remote
edges.

4.7.1 Error Analysis
As is indicated in Table 4.5, the Implicit Parser successfully predicted 6 im-
plicit arguments with the correct implicit category labelled. In the unlabelled
evaluation, 11 implicit arguments are predicted, without taking into consid-
eration their implicit labels. It is worth noting that the current evaluation
metric follows a strict matching rule, meaning that if 2 implicit arguments are
under the same parent span, they would not be considered correctly matched
unless both arguments are predicted with the correct labels.

Table 4.6 shows the confusion matrix of Implicit Parser’s performance
on the set of test data of Refined EWT. The Implicit Parser has emitted
predictions for all implicit categories. However, only six of these predictions
are correctly labelled, whose distribution are 2, 1, 3 for Deictic, Generic and
Genre-based respectively. Genre-based is the most predicted categories with
a total of 11, while Iterated-set has only been predicted once, which was also
incorrectly labelled. One can see that Generic has the best prediction recall,
which is 1/(2+1), with the runner-up being Deictic, which is 2/(4+2+1).
Unfortunately, the parser failed to predict Non-specific, Iterated-set and
Type-identifiable despite its 3, 3 and 1 try for each category. We assume that
due to the few instances of iterated-set and Type-identifiable in all train, dev
and eval set, it is difficult for the parser to see such instances enough times
so as to learn anything from them. Distinctively, despite the fair number of
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Non-specific instances, their internal difference might be too great that the
parser could not capture traits of such type of implicit arguments. As a result,
it is only realistic for the parser to predict Deictic, Generic and Genre-based
with the current conditions provided so far.
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Chapter 5

Discussion

5.1 Objectives
This thesis proposed a fine-grained typology for implicit argument annotation.
Based on the typology design, we constructed an open dataset with a rich
conceptually inspired annotation of implicit arguments on Universal Con-
ceptual Cognitive Annotation (UCCA). The corpus comprises 200 passages.
We also provide descriptive statistics of the data with comparison to FiGref.
Subsequently, we developed the first parser that can deal with and predict
implicit arguments for meaning representation schemes and evaluated its
performance on the new dataset.

5.2 Discussion and Challenges
Our work focuses on implicit arguments in meaning reprensentations, specif-
ically for UCCA. Although we argue that the proposed six-type implicit
argument typology requires a relatively low cognitive load and should be
easy for annotators to learn, the current dataset retains its pilot status due
to the fact that it only involved one annotator; therefore no inter-annotator
agreement measurement could be provided and used to conduct evaluation of
annotation ambiguity and complexity. However, we expect to invite a new
annotator in the future to perform the experiment mentioned above, and

36
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formally re-assess both the soundness of the annotation scheme we opt for
and the reproducibility of annotation work.

In addition, since UCCA has already been annotated in multiple languages
and has been proven that it largely maintains semantic structures across
sentences expressing same meanings across languages. The second future
work direction is to annotate more data on languages other than English and
to investigate to what extent implicit arguments remain in different languages,
and look into substantial convergence and divergence of fine-grained implicit
type distribution across languages. Such work is important for deep natural
language understanding that no existing NLP technologies can address.

Given the small data size of Refined EWT, to train an effective parser ought
to be considered a tough challenge - and the same goes for conducting a proper
evaluation. As has been discussed about previous works on parsing implicit
roles in Section 2.3 , much as they did not target parsing fine-grained implicit
annotation, it would be interesting to see how well linguistic-phenomena-
specific regular expression parser the like of work by Bender et al. (2011) can
capture implicit arguments in Refined UCCA EWT; Since our Refined parser
is the first transition-based parser that is able to handle implicit arguments,
it is also worth evaluating its performance on other implicit datasets such
as G&C (Gerber and Chai, 2010), SemEval 2010 (Ruppenhofer et al., 2009)
and especially on parsing implicit arguments licensed by nominal predicates
(Roth and Frank, 2015).

5.3 Conclusion
We proposed a novel typology for different implicit arguments in UCCA,
which allows annotation with a relatively low cognitive load. We refined
and reviewed part of the existing UCCA English Web Treebank dataset and
piloted annotation of our guidelines with a refinement layer of fine-grained
implicit arguments. Moreover, it is currently the only published dataset with
this kind of information. Then we introduced the first parser that is able
to handle and predict implicit nodes dynamically, and label them with fair
accuracy in meaning representations. Finally, we evaluated it on the new
dataset.
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Our work addresses a deep linguistic problem, impossible to deal with
current machine learning approaches, in implicit role interpretation and
provides an example for conducting research about it. Our study has the
potential to benefit natural language understanding, especially in genre-
specific context, e.g., social media and customer reviews. It is anticipated
that our work will inspire tailored design of implicit role annotation in other
meaning representation frameworks and improve current semantic parsing
work. Downstream tasks such as coreference resolution and human-robot
interaction are also likely to benefit from reducing ambiguity and increase
contextual understanding by explicitly modelling implicit arguments.

While the pilot work is promising, it is crucial to evaluate the annotation
quality further, expand the corpus to all UCCA EWT and possibly extend it
to multiple languages. To predict and label implicit argument with higher
accuracy would be an important but challenging task in the future.
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